

Units and Measurements

In order to make the measurement of a physical quantity we have, first of all, to evolve a standard for that measurement so that different measurements of same physical quantity can be expressed relative to each other. That standard is called a <u>unit</u> of that physical quantity.

System of Units:-

- (a) C.G.S (Centimeter-Grand-Second) system.
- (b) F.P.S. (Foot-Pound-Second) system.
- (c) M.K.S. (Meter-Kilogram--Second) system.
- (d) M.K.S.A. (Meter-Kilogram-Second-Ampere) unit.

Dimensional Formula:-

Dimensional formula of a physical quantity is the formula which tells us how and which of the fundamental units have been used for the measurement of that quantity.

. How to write dimensions of physical quantities:-

- (a) Write the formula for that quantity, with the quantity on L.H.S. of the equation.
- (b) Convert all the quantities on R.H.S. into the fundamental quantities mass, length and time.
- (c) Substitute M, L and T for mass, length and time respectively.
- (d) Collect terms of M,L and T and find their resultant powers (a,b,c) which give the dimensions of the quantity in mass, length and time respectively.

• Characteristics of Dimensions:-

- (a) Dimensions of a physical quantity are independent of the system of units.
- (b) Quantities having similar dimensions can be added to or subtracted from each other.
- (c) Dimensions of a physical quantity can be obtained from its units and vice-versa.
- (d) Two different physical quantities may have same dimensions.
- (e) Multiplication/division of dimensions of two physical quantities (may be same or different) results in production of dimensions of a third quantity.

PHYSICAL QUANTITY	SYMBOL	DIMENSION	MEASUREMENT UNIT	UNIT
Length	S	L	Meter	m
Mass	М	M	Kilogram	Kg
Time	t	Т	Second	Sec
Electric charge	q	Q	Coulomb	С
luminous intensity	I	С	Candela	Cd
Temperature	Т	K	Kelvin	°K
Angle	q	none	Radian	None

Mechanical Physical Quantities (derived)				
PHYSICAL QUANTITY	SYMBOL	DIMENSION	MEASUREMENT UNIT	UNIT
Area	А	L ²	square meter	m ²
Volume	V	L³	cubic meter	m³
velocity	V	L/T	meter per second	m/sec
angular velocity	W	T ⁻¹	radians per second	1/sec
acceleration	а	LT ⁻²	meter per square second	m/sec²
angular acceleration	а	T ⁻²	radians per square second	1/se¢²
Force	F	MLT ⁻²	Newton	Kg m/sec²
Energy	Е	ML ² T ⁻²	Joule	Kg m²/sec²
Work	W	ML ² T ⁻²	Joule	Kg m²/sec²
Heat	Q	ML ² T ⁻²	Joule	Kg m²/sec²
Torque	t	ML ² T ⁻²	Newton meter	Kg m²/sec²

Power	Р	ML ² T ⁻³	watt or joule/sec	Kg m²/sec³
Density	D or ρ	ML ⁻³	kilogram per cubic meter	Kg/m³
pressure	Р	ML-1T-2	Newton per square meter	Kg m ⁻¹ /sec²
impulse	J	MLT ⁻¹	Newton second	Kg m/sec
Inertia	I	ML^2	Kilogram square meter	Kg m²
luminous flux	f	С	lumen (4Pi candle for point source)	cd sr
illumination	Е	CL ⁻²	lumen per square meter	cd sr/m²
entropy	S	ML ² T ⁻² K ⁻¹	joule per degree	Kg m²/sec²K
Volume rate of flow	Q	L³T-1	cubic meter per second	m³/sec
kinematic	n	L ² T ⁻¹	square meter	m²/sec
viscosity			per second	
dynamic viscosity	m	ML ⁻¹ T ⁻¹	Newton second per square meter	Kg/m se¢
specific weight	g	ML ⁻² T ⁻²	Newton per cubic meter	Kg m ⁻² /sec ²
Electrical Physical Quantities (derived)				

Electric I QT-1 Ampere C/seccurrent emf, voltage, E ML2T-2Q-1 Volt Kg m2/seccurrent resistance or R ML2T-1Q-2 ohm Kgm2 /seccurrent
potential resistance or R ML²T-¹Q-² ohm Kgm² /se
Electric s M-2L-2TQ2 mho secC2/Kg conductivity
capacitance C M ⁻¹ L ⁻² T ² Q ² Farad sec ² C ² /K
inductance L ML ² Q ⁻² Henry Kg m ²
Current density J QT-1L-2 ampere per C/sec square meter
Charge density r QL ⁻³ coulomb per cubic C/m ⁸ meter
magnetic flux, B MT ⁻¹ Q ⁻¹ weber per Kg/sec Magnetic induction square meter
magnetic H QL ⁻¹ T ⁻¹ ampere per meter C/m so intensity
magnetic vector A MLT ⁻¹ Q ⁻¹ weber/meter Kg m/se
Electric E MLT ⁻² Q ⁻¹ volt/meter or Kg m/se field intensity newton/coulomb
Electric displacement D QL ⁻² coulomb per square meter C/m ²

permeability	m	MLQ ⁻²	henry per meter	Kg m/C²
permittivity,	е	T ² Q ² M ⁻¹ L ⁻³	farad per meter	sec²C²/Kgm³
dielectric constant	К	MºLºTº	None	None
frequency	f or n	T-1	Hertz	sec ⁻¹
angular frequency	W	T-1	radians per second	sec ⁻¹
Wave length	I	L	Meters	М

• Principle of homogeneity:-

It states that "the dimensional formulae of every term on the two sides of a correct relation must be same."

• Types of error:-

- (a) Constant errors:- An error is said to be constant error if it affects, every time, a measurement in a similar manner.
- (b) Systematic errors:- Errors which come into existence by virtue of a definite rule, are called systematic errors.
- (c) Random error or accidental error:- Error which takes place in a random manner and cannot be associated with a systematic cause are called random or accidental errors.
- (d) Absolute error:- $\Delta x_i = x_i \bar{x}$

Relative Error:-

$$\delta x_r = \frac{\bar{\Delta x}}{\bar{x}}$$

Percentage Error:-

$$\delta x_p = \frac{\Delta x}{\bar{x}} \times 100$$