Set Theory

SET THEORY

A set is defined as a collection of object united by a common rule. It can be also defined as 'a well-defined collection of objects', which can be interpreted as a rule with all the members of the set are associated with.

Types of Set

1. Empty or Null Set A set having no element and it is denoted as φ or { }.

Example: A = set of even prime numbers excluding 2.

2. Singleton Set A set having only one element.

Example: A = set of even prime number/s.

3. Finite Set A set whose elements can be counted and get terminated at some point, say 'n'.

Cardinal number of a finite set: In the above explanation, 'n' is known as cardinal number of that set and is denoted by n(A).

Example: A = set of positive odd numbers below 100.

4. Infinite Set A set whose elements cannot be counted.

Example: A = set of all irrational numbers between 1 and 2. or a set of all odd numbers below hundred.

5. Equal Sets Two sets are said to be equal sets if all the element of set A are included in set B and all the element of set B are included in set A.

If two sets A and B are equal then it is represented by A = B and if A and B are not equal then it is written as $A \neq B$, that is, all the elements of set A are not included in set B and all the elements of set B are not included in set A.

Example: $A = \{a, b, c\}$ are equal sets. Hence, in the case we can write Set A = Set B or simply A = B

Set Theory

Some Important Result

If A and B are any two sets, then

1.
$$A - B = A \cap B'$$

2.
$$B-A=B\cap A'$$

3.
$$(A - B) \cup B = A \cup B$$

4.
$$(A - B) \cap B = \phi$$

5.
$$(A - B) \cup (B - A) (A \cup B) - (A \cap B)$$