

#### **ARITHMETIC PROGRESSIONS**

Quantities are said to be in arithmetic progression when they increase or decrease by a common difference.

This each of the following series forms an arithmetic progressions

# To Find the Sum of the Given Number of Terms in a arithmetic progressions

Let a denote the first term. *d,* the common difference, and *n* the total number of terms. Also, let *L* denote the last term, and S the required sum; then

$$S = n(a + L)/2$$
  
 $L = a + (n - 1) d$   
 $S = n/2 \times [2a + (n - 1)d]$ 

### To Find the Arithmetic Mean between any Two Given Quantities

Let a and b be two quantities and A be their arithmetic mean.

Then since a, A, b are in AP. We must have

$$b - A = A - a$$

Each being equal to the common difference;

This gives us A = (a + b)/2

# To Insert a Given Number of Arithmetic Means between Two Given Quantities

Let a and b be the given quantities and n be the number of means.

Including the extremes the number of terms will then be n + 2 so that we have to find a series of n + 2 terms in AP, of which a is the first, and b is the last term.

Let *d* be the common difference;



Then be = the 
$$(n + 2)$$
th term  
= a +  $(n + 1)d$ 

Hence, 
$$d = (b - a)/(n + 1)$$

And the required means are

A+ (b - a)/n -1, a + 2(b - a)/n + 1,... a + 
$$n(b - a)/n + 1$$

#### **GEOMETRIC PEOGRESSIONS**

Quantities are said to be in Geometric progressions when they increase or decrease by a constant factor.

The constant factor is also called the *common ratio* and it is found by dividing any term by the term immediately preceding it.

If we examine the series 
$$a$$
,  $ar$ ,  $ar^2$ ,  $ar^3$ ,  $ar^4$ ,...

we notice that in any term the index of r is always less by one than the number of the term in the series.

If *n* be the number of terms and if I denote the last, or nth term, we have

$$I = ar^{n-1}$$

### The Find the Geometric Mean between Two Given Quantities

Let a and b be the two quantities; G the geometric mean. Then since a, G, b are in GP,

$$b/G = Gla$$

Each being equal to the common ratio

$$G^2 = ab$$

Hence G = √ab

# To Insert a given Number of Geometric Means between Two Given Quantities



Let a and b the given quantities and n the required number of mean to be inserted. In all there will be n + 2 terms so that we have to find a series of n + 2 terms in GP of which a is first and b the last.

Let r be common ratio;

Then 
$$b = the(n + 2)th term = ar^{n+1};$$
 
$$r^{(n+1)} = b/a$$
 
$$r = (b/a)^{1/n+1}$$

Hence the required number of mean are ar, ar<sup>2</sup>, .... ar<sup>n</sup>,

where r has the value found in (1).

### To Find Sum of a Number of Terms in a Geometric Progression

Let a be the first term, r the common ratio, n the number of terms, and  $S_n$  be the sum to n terms.

If 
$$r > 1$$
, then 
$$S_n = a(r^n - 1)/(r - 1)$$
 If  $r < 1$ , then 
$$S_n = a(1 - r^n)/(1 - r)$$

### To Find the Harmonic Mean between Two Give Quantities

Let a, b be the two quantities, H their harmonic mean; then 1/a, 1/H and 1/b are in A.P.;

$$1/H - 1/a = 1/b - 1/H$$
  
 $2/H = 1/a + 1/b$   
i.e.  $H = 2ab/(a + b)$ 

#### THEOREMS RELATED WITH PROGRESSION

If A, G, H are the arithmetic, geometric, and harmonic means between a and b, we have

$$A = (a + b/2)$$



$$H = 2ab/(a + b)$$

Therefore, A x H = 
$$(a + b)/2 \times 2ab/(a + b) = ab = G^2$$

that is, G is the geometric mean between A and H.

From these result we see that

$$A - G = a + b/2 - \sqrt{ab} = (a + b - 2 \sqrt{ab})/2$$
  
=  $[(\sqrt{a} - \sqrt{b})/\sqrt{2}]^2$