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Waves optics 
 

Wave front                                                                                                                                                                                 
The wave front at any instant is defined as the locus of all the particles of the medium which are in the 
same state of vibration.                                                                                                                                                                   
Or                                                                                                                                                                                                      
Aan imaginary surface passing through particles oscillating with same phase is known as wavefront A 
point source of light at a finite distance in an isotropic medium emits a spherical wave front (Fig a).                       
A point source of light in an isotropic medium at infinite distance will give rise to plane wavefront (Fig. 
b).                                                                                                                                                                                               
A linear source of light such as a slit illuminated by a lamp, will give rise to cylindrical wavefront (Fig c). 
 

 
HUYGENS PRINCIPLE                                                                                                                                                        
Huygen’s principle states that,                                                                                                                                                           
(i) every point on a given wave front may be considered as a source of secondary wavelets which spread 
out with the speed of light in that medium and  
(ii) the new wavefront is the forward envelope of the secondary wavelets at that instant  
 

Huygen’s construction for a spherical and plane wavefront :                                                                                                  
Huygen’s construction for a spherical and plane wavefront is shown in Fig.a. Let AB represent a given 
wavefront at a time t = 0. According to Huygen’s principle, every point on AB acts as a source of 
secondary wavelets which travel with the speed of light c. To find the position of the wave front after a 
time t, circles are drawn with points P, Q, R ... etc as centres on AB and radii equal to ct.                                       
These are the traces of secondary wavelets. The arc A1B1 drawn as a forward envelope of the small 
circles is the new wavefront at that instant.                                                                                                                            
If the source of light is at a large distance, we obtain a plane wave front A1 B1 as shown in Fig b. 
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Refraction of a plane wavefront at a plane surface                                                                                                             
Let XY be a plane refracting surface separating two media 1 and 2 of refractive indices μ1 and μ2 (Fig). 
The velocities of light in these two media are respectively v1 and v2.                                                                 
Consider a plane wave front AB incident on the refracting surface at A. PA and QBC are perpendiculars 
drawn to AB at A and B respectively. Hence they represent incident rays. NAN1 is the normal drawn to 
the surface. The wave front and the surface are perpendicular to the plane of the paper.                                  
According to Huygen’s  principle each point on the wave front act as the source of secondary wavelet. 
By the time, the secondary wavelets from B, reaches C, the secondary wavelets from the point A would 
travel a distance AD = v2t, where t is the time taken by the wavelets to travel the distance BC.                              
∴BC = C1t and AD = C2t                                                                                                                                                           
Taking A as centre and C2t as radius an arc is drawn in the second medium. From C a tangent CD is 
drawn to this arc.                                                                                                                                                                                  
Therefore CD is the refracted plane wavefront and AD is the refracted ray 

 
Laws of refraction                                                                                                                                                                             

i.  The incident wave front AB, the refracted wave front CD and the refracting surface XY all lie in 
the same plane.  
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ii. From figure for ∆ ABC and ∆ ACD                                   
𝑠𝑖𝑛𝑖/𝑠𝑖𝑛𝑟 = 𝐵𝐶⁄𝐴𝐶 / 𝐴𝐷⁄𝐴𝐶= 𝐵𝐶/𝐴𝐷 = 𝑣1 𝑡/𝑣2 𝑡 = 𝑣1/𝑣2 = 𝑛21 

Constant n21 in above equation is known as refractive index of medium 2 with respect to 
medium also represented as 1μ2                                                                                                                          
This is Snell’s law of refraction  

 
Further, if λ1 and λ2 denote the wavelengths of light in medium 1 and medium 2, respectively and if the 
distance BC is equal to λ 1 then the distance AE will be equal to λ 2 (because if the crest from B has 
reached C in time τ, then the crest from A should have also reached E in time τ ); thus  

𝜆1/𝜆2 = 𝐵𝐶/𝐴𝐸 = 𝑣1/𝑣2 
The above equation implies that when a wave gets refracted into a denser medium (v1 > v2) the 
wavelength and the speed of propagation decrease but the frequency f (= v/λ) remains the same.  
 

Refraction of a plane wave by a thin prism                                                                                                                                             
we consider a plane wave passing through a thin prism. Clearly, since the speed of light waves is less in 
glass, the lower portion of the incoming wavefront (which travels through 

the greatest thickness of glass) will get delayed resulting in a 
tilt in the emerging wavefront as shown in the figure.  
 

 
 
 
 

(b) a convex lens.                                                                                                                                                                          
We consider a plane wave incident on a thin convex lens; the central part of the incident plane wave 
traverses the thickest portion of the lens and is delayed the most. The emerging wavefront has a 
depression at the centre and therefore the wavefront becomes spherical and converges to the point F 
which is known as the focus. 

 
 

(c) Reflection of a plane wave by a concave mirror                                                                                                                         
a plane wave is incident on a concave mirror and on reflection we have a spherical wave converging to 
the focal point F. 
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Coherent and incoherent sources                                                                                                                                                
Two sources are said to be coherent if they emit light waves of the same wave length and start with 
same phase or have a constant phase difference. Two independent monochromatic sources, emit waves 
of same wave length. But the waves are not in phase. So they are not coherent. This is because, atoms 
cannot emit light waves in same phase and these sources are said to be incoherent sources. 
 

Superposition principle                                                                                                                                                        
When two or more waves simultaneously pass through the same medium, each wave acts on every 
particle of the medium, as if the other waves are not present. The resultant displacement of any particle 
is the vector addition of the displacements due to the individual waves. This is known as principle of 
superposition. If Y1 and Y2 represent the individual displacement then the resultant displacement is 
given by Y = Y1 + Y2 

 
Thus, superposition principle describes a situation when more than one waves superpose (i.e. interfere) 
at a point. “ The effect produced by superposition of two or more wave is called interference”. 
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Interference due to two waves                                                                                                                                                                                                                     
Suppose two harmonic waves having initial phase φ1 and φ2 are emitted from two point like sources S1 
and S2 respectively. They superimpose simultaneously ( i.e. at the same time t) at a point P as shown in 
figure. 

 
Visible perception of light is produced only by electric field, and therefore, in the present case we write 
light waves produced by source S1 and S2 in terms of electric fields (e) only. Due to S1 source, 

𝑒1   = 𝐸1   𝑠𝑖(𝜔1 𝑡 − 𝑘1𝑟1 + 𝜑1 ) 
And due to source S2  

𝑒2   = 𝐸2   𝑠𝑖(𝜔2 𝑡 − 𝑘2𝑟2 + 𝜑2 ) 
Here E1 and E2 represent amplitude of electric fields, ω1 and ω2 denotes angular frequencies of waves, 
and k1 and k2 are wave vectors.                                                                                                                                                                                                 
Let δ1 = ω1t - k1r1+φ1 and δ2 = ω2t – k2r2+φ2                                                                                                          
Then e1 = E1 sin δ1 and e2 = E2 sin δ2                                                                                                                                   
Now according to principle of superposition                              
e = e1 + e2  
magnitude of resultant vector e  

𝑒2 = 𝑒1
2 + 𝑒2

2 + 2𝑒1𝑒2    
If at a instant of time E1 and E2 amplitude of waves then, resultant amplitude E is  

𝐸 2 = 𝐸1 2 + 𝐸2 2 + 2𝐸1𝐸2𝑐𝑜(𝛿1 − 𝛿2 ) 
The average intensity of light is proportional to square of amplitude I ∝ E 2 thus equation becomes 

𝐼 = 𝐼1 + 𝐼2 + 2√𝐼1 𝐼2 〈𝑐𝑜(𝛿1 − 𝛿2 )〉 
In above equation I1 and I2 are the average intensities due to each wave. They are independent of time. 
The last term in above equation is known as interference term which depends on time  
Now  

〈𝑐𝑜(𝛿1 − 𝛿2 )〉 = 1/𝑇 ∫𝑡=𝑇𝑡=0  𝑐𝑜𝑠 (𝛿1 − 𝛿2 )𝑑𝑡 
Here t is period of electric field oscillation. On substituting value of δ2 and δ1 in above equation  
〈𝑐𝑜(𝛿1 − 𝛿2 )〉 = 1/𝑇 ∫𝑡=𝑇𝑡=0  𝑐𝑜𝑠 {(𝜔1 𝑡 − 𝜔2 𝑡) + (𝑘2𝑟2 − 𝑘1𝑟1 ) + (𝜑2 − 𝜑1 )}𝑑𝑡 --(1) 
Case I: Incoherent sources 
 If angular frequency of both source is not same thus cos(𝛿1 − 𝛿2 ) is time dependent and average value is 
zero. Thus superposed two waves produce the average intensity I1 + I2 at point P  
Case II: Coherent sources: For sources to be coherent there angular frequency should be same thus ω1 = 
ω2 = ω (say) Also since both waves are travelling in same medium there speed will be also same thus 
wave length is same thus k1 = k2 = k (say) for sake of simplicity we will consider φ2 = φ1 . From equation 
(1) ignoring negative sign of cos  

〈𝑐𝑜(𝛿1 − 𝛿2 )〉 = 1/𝑇 ∫𝑇
0 𝑐𝑜𝑠{𝑘(𝑟2 − 𝑟1 )}𝑑𝑡  

〈𝑐𝑜(𝛿1 − 𝛿2 )〉 = 1/𝑇 𝑐𝑜𝑠{𝑘(𝑟2 − 𝑟1 )- ∫𝑇
0 𝑑𝑡  

〈𝑐𝑜(𝛿1 − 𝛿2 )〉 = 𝑐𝑜𝑠{𝑘(𝑟2 − 𝑟1 )}-- eq(2)  
Further we will assume that amplitude of both waves is equal I1 = I2 = I’ then  
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From equation (1) and eq(2) we get  
𝐼 = 𝐼 ′ + 𝐼 ′ + 2√𝐼′𝐼′𝑐𝑜𝑠(𝑟2 − 𝑟1 ) 

𝐼 = 2𝐼 ′ + 2𝐼′𝑐𝑜𝑠(𝑟2 − 𝑟1 ) 
𝐼 = 2𝐼 ′ ,1 + 𝑐𝑜𝑠(𝑟2 − 𝑟1 )} 

𝐼 = 2𝐼 ′ *2𝑐𝑜𝑠2 { (𝑟2 − 𝑟1 )/2 }] 
[ Use trigonometric identity 𝑐𝑜𝑠2𝑢 = 1+𝑐𝑜𝑠2𝑢/2 ]  

𝐼 = 4𝐼′𝑐𝑜𝑠2 { (𝑟2 − 𝑟1 )/2 } 
Here r2 – r1 =𝛿 is known as the path difference between superposing waves  

𝐼 = 4𝐼′𝑐𝑜𝑠2 { 𝛿 2 } 
 
Special Cases  
Case I : Constructive Interference For I = 4I’ = I0 maximum intensity of light 
 
term 𝑐𝑜𝑠2 { 𝑘(𝑟2−𝑟1 )/2 } Should be equal to one, It is possible if  

𝑘𝛿/2 = 𝑛𝜋 
2𝜋𝛿/2𝜆 = 𝑛𝜋 ∵ 𝑘 = 2𝜋/𝜆 

𝛿 = 𝑛𝜆 
Here n = 0, 1, 2, 3, ……  
“If the path difference between superposing waves is nλ ( n = 0, 1, 2, 3, …..) intensity at a superposing 
point is maximum. Such interference is called constructive interference” From equation  

𝐼 = 𝐼1 + 𝐼2 + 2√𝐼1 𝐼2 〈𝑐𝑜(𝛿1 − 𝛿2 )〉 
For constructive interference cos(δ2-δ1) = 0 thus  

𝐼𝑚𝑎𝑥 = 𝐼1 + 𝐼2 + 2√𝐼1 𝐼2 
Or  

𝐼𝑚𝑎𝑥 = (√𝐼1 + √𝐼2) 2 
𝐼𝑚𝑎𝑥 ∝ (𝐴1 + 𝐴2 ) 2 

Case II: Destructive Interference  
For intensity I = 0  
term 𝑐𝑜𝑠2 { 𝑘(𝛿)/2 } Should be equal to zero, It is possible if  

𝑘𝛿/2 = 𝜋/2 , 3𝜋/2 , 5𝜋/2 , … … …. 
Or  

𝑘𝛿/2 = (2𝑛 − 1) 𝜋/2 
As k = 2π/λ 

2𝜋𝛿/2𝜆 = (2𝑛 − 1) 𝜋/2 
𝛿 = (2𝑛 − 1) 𝜆/2 

Here n = 1, 2, 3, 4, ….  
“ If phase difference between superposing waves is (2n-1)π intensity at a superposing point is minimum. 
This interference is called destructive interference”                                           
“If path difference between superposing wave is (2n-1) (λ/2) intensity at superposed point is minimum. 
Such interference is known as destructive interference”  
Here n = 1, 2, 3, 4, …. From equation 

𝐼 = 𝐼1 + 𝐼2 + 2√𝐼1 𝐼2 〈𝑐𝑜(𝛿1 − 𝛿2 )〉 
For destructive interference cos(𝛿1 − 𝛿2 ) = -1 thus  

𝐼𝑚𝑖𝑛 = 𝐼1 + 𝐼2 − 2√𝐼1 𝐼2 
Or  

𝐼𝑚𝑖𝑛 = (√𝐼1 − √𝐼2) 
2 

𝐼𝑚𝑖𝑛 ∝ (𝐴1 − 𝐴2 ) 
2 
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Condition for sustained interference  
The interference pattern in which the positions of maximum and minimum intensity of light remain fixed 
with time, is called sustained or permanent interference pattern. The conditions for the formation of 
sustained interference may be stated as :  
(i) The two sources should be coherent  
(ii) Two sources should be very narrow  
(iii) The sources should lie very close to each other to form distinct and broad fringes  
 

Solved numerical 
 
Q) Two sources of intensity I and 3I are used in an interference experiment. Find the intensity at a point 
where the waves from the two sources superimpose with a phase difference (1) Zero (2) π/2  
Solution:  
In case of interference  

𝐼′ = 𝐼1 + 𝐼2 + 2√𝐼1 𝐼2 〈𝑐𝑜(𝛿1 − 𝛿2 )〉 
𝐼 ′ = 𝐼1 + 𝐼2 + 2√𝐼1 𝐼2 〈𝑐𝑜(𝛿)〉 

(1) As δ = 0, cosδ =1  
∴ 𝐼′ = 3𝐼 + 𝐼 + 2√(3𝐼)(𝐼) × 1 𝐼′ = 4𝐼 + 2√3𝐼 (2) As δ = π/2, cosδ = 0 

∴ 𝐼′ = 3𝐼 + 𝐼 + 2√(3𝐼)(𝐼) × 0 ∴ 𝐼′ = 4𝐼 
 

 
Location of bright and dark fringes on screen (x)           
Bright fringes:  
By the principle of interference, condition for constructive interference is the path difference = nλ  

nλ = 𝑥𝑑/𝐷 
𝑥 = 𝑛𝜆𝐷/𝑑 

By substituting n = 0, 1, 2, 3…  
If n = 0 then we get location central bright fringe  
n=1, we get then location of first bright fringe  
n=2, we get then location of second bright fringe  
n=3, , we get then location of third bright fringe… etc  
 

Dark fringes:  
By the principle of interference, condition for destructive interference is the path difference  

𝛿 = (2𝑛 − 1) 𝜆/2 
(2𝑛 − 1) 𝜆/2 = 𝑥𝑑/𝐷 
𝑥 = (2𝑛 − 1)𝜆/2𝑑 

 
By substituting n = 1, 2, 3…  
n=1, we get then location of first dark fringe  
n=2, we get then location of second dark fringe  
n=3, we get then location of third dark fringe… etc  
 

Displacement of fringe pattern  
If a thin transparent slab of thickness t and refractive index μ is placed in front of one of sources, for 
example, in front of S1. This changes the path difference because light from S1 now travels more optical 
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path than earlier. (Optical path in medium is equal to the product of refractive index of the medium to 
geometrical path length in air) 

 
Path difference before placing slab = S2P – S1P =r2 – r1 = δ  
On placing slab path length of thickness t effective path length S1P = (r1 –t) +tμ  
Thus effective path difference after placing slab δ’ = r2 – [(r1 –t) +tμ+  
∴ δ’ = ( r2 – r1 ) + t(μ – 1 )  
From the geometry of figure r2-r1 = dsinθ, since θ is very small  

𝑟2 − 𝑟1 = 𝑑𝑡𝑎𝑛𝜃 = 𝑑𝑥′𝑚/𝐷 
∴ 𝛿 ′ = 𝑑𝑥′𝑚/𝐷 + (𝜇 − 1) 

𝑥′𝑚 = 𝑛𝜆𝐷/𝑑 − (𝜇 − 1) 𝑡𝐷/𝑑 
In absence of slab, the mth maxima is given by  

𝑥𝑚 = 𝑛𝜆𝐷 𝑑 
Therefore, the fringe shift is given by  

𝑥0 = 𝑥𝑚 − 𝑥′𝑚 = (𝜇 − 1) 𝑡𝐷/𝑑 
When a transparent slab is introduced, the fringe pattern shifts in the direction where the slab is placed.  
 

Solved numerical 
 
Q) A ray of light travels through a slab as shown in figure. The refractive index of the material of the slab 
varies as μ = 1.2 + x , where 0 ≤ x ≤ 1 m. What is the equivalent optical path of the glass slab?  

 
 
Solution  
Consider a small geometric path dx then optical path = μdx  
Thus optical path op = 
𝑜𝑝 = ∫1

0  (1.2 + x)𝑑𝑥 = [1.2𝑥 + 𝑥2/2 ]0
1  

𝑜𝑝 = 1.2 + 1/2 = 3.4/2 = 1.7 
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Distance between two consecutive bight or dark fringe  
Or Width of fringe , Band width (β)  
 
The distance between any two consecutive bright or dark bands is called bandwidth. The distance 
between (n+1)th and nth order consecutive bright fringes from O is given by  

𝛽 = 𝑥𝑛+1 − 𝑥𝑛 = (𝑛 + 1) 𝜆𝐷/𝑑 − (𝑛) 𝜆𝐷/𝑑 = 𝜆𝐷/𝑑 
Similarly, it can be proved that the distance between two consecutive dark bands is also equal to 𝜆𝐷/𝑑 
Angular fringe width or angular separation between fringes is  

𝜃 = 𝜆/𝑑 
Since bright and dark fringes are of same width, they are equi−spaced on either side of central 
maximum.  
 

Solved numerical 
 
Q) In Young’s double slit experiment, angular width of a fringe formed on a distant screen is 0.1O . the 
wavelength of the light used is 6000Å . What is the spacing between the slit. If above setup is immersed 
in liquid it is observed that angular fringe width is decreased by 30% find refractive index of liquid 
Solution  
Angular fringe width or angular separation between fringes is  

𝜃 = 𝜆/𝑑 
𝑑 = 𝜆/𝜃 = 6000 × 10−10 / 0.1 × 𝜋/180 = 3.44 × 10−4𝑚 

(ii)Given that when set up with first light is immersed in liquid angular width decreases by 30% thus 
wave length of first light in liquid = 4200Å  
From formula for refractive index 

𝜇 = 𝜆𝑎𝑖𝑟/𝜆𝑙𝑖𝑞 = 6000/4200 = 1.428 
 

Condition for obtaining clear and broad interference bands  
(i) The screen should be as far away from the source as possible.  
(ii) The wavelength of light used must be larger.  
(iii) The two coherent sources must be as close as possible. 
 

Diffraction  
When waves encounters obstacles or openings like slits, they bend round the edges. This bending of 
wave is called diffraction. Diffraction is the effect produced by the limiting part of the wavefront. 
Smaller is the width of the slit, more will be diffraction for given wavelength. It is also found that if the 
wavelength and the width of the slit are so changed that ratio (λ/d) remains constant, amount of 
bending or diffraction does not change. If ratio λ/d is more ,then more is the diffraction  
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Diffraction due to single slit 
 

 
Central Maxima:  
Consider a plane wavefront arrive at a plane of slit, 
according to Huyen’s principle all the point on the slit 
like AOB acts as secondary source having the same 
phase and produce secondary waves.  
Those waves originated from each points of a slit and 
diffracted normal to the plane of the slit or we can say 
in the direction of incident wave will be concentrated 
at point Po by lens. In figure out of a many waves only 
three rays are shown in figure.  
 
 
 
 

Screen is at focal length of lens .  
Ray emitted from A and B are in phase and passes equal distance through air and lens thus they are in 
phase when get converged at Po .  
Now ray emitted from O travel less distance in air but more distance in lens, in lens velocity of light gets 
reduced thus optical path travelled by the ray emitted by O is equal to optical path due to ray A and B.. 
Thus all rays meeting at Po are in phase produces central bright fringe.  
(Optical path in medium is equal to the product of refractive index of the medium to geometrical path 
length in air)  
 
First minimum  
As shown in figure consider a waves which is diffracted an angle θ with respect to perpendicular bisector 
XPo of the slit. Here, point X is the midpoint of slit AB. Therefore AX = Xb = d/2.  
Here secondary waves originated from all points A, X, B of slit are through to be divided in two parts 
Wave from AX and waves from X to B. As per figure, all these waves diffracted at an angle θ are focused 
at point P1 of a screen. Draw AM ⊥ BL. It is obvious that all the rays reaching from AM to P1 have equal 
optical path 
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But rays going from A and X, and reaching to point P1 have path difference of XY Let assume diffraction 
angle be θ is such that XY = λ/2  
In this situation, waves from A and X will follow the condition of destructive interference at point P1 and 
resultant intensity will be zero 
 Further for all point between AX there exists a point between XB ,such that ray from point between XB 
have path difference of λ/2 with respect to rays from point between AX  
Thus in totality, destructive interference will take place at point P1  
Point P1 is known as first minimum  
 

Condition for minima:  
From geometry of figure dsinθ = λ  
General equation is  
dsinθ = nλ  
For n = 1 we get first minima  
n = 2 we get second minima  
 
First Maxima:  
As shown in figure suppose slit AB is assumed to be divided in three equal parts AX1, X1 X2, X2B . Here AX1 
= X1 X2 = X2B = d/3. Draw AM ⊥ BL. Wave reaching from AM to P2 will have equal optical path Waves 
starting from A and X1 and imposing at point P1 will have path difference X1Y1 . 

 
 
Let us assume that diffraction θ is such that  

𝑋1𝑌1 = 𝜆/2 
𝑋2𝑌2 = 𝜆 

𝐵𝑀 = 3𝜆/2 
Since path difference between waves originated from A and X1 and superimpose at point P2 is λ/2, they 
interfere destructively. And intensity at point P2 due to these waves will be zero.  
In the same way, waves from every pair AX1 and X1X2 will have path difference λ/2 and resultant 
intensity at point P2 due to them is zero.  
However, intensity of ray diffracted at an angle θ from section X1B is not vanishing at point P2. Therefore 
due to this section of the slit intensity at point P2 will not be zero. And point P2 will be bright                                                                                                                                           
Here point P2 is known as first maximum. It is obvious that intensity at point P2 will be far less than 
central bright spot  
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Condition for minima:  
From geometry of figure for fist maxima  

𝑑𝑠𝑖𝑛𝜃 = 3𝜆/2 
General formula  

𝑑𝑠𝑖𝑛𝜃 = (2𝑛 + 1)/2 
For n = 1 we get first maxima  
n = 2 we get second maxima 
 

Angular width  
For first order minima dsinθ =λ or  

𝑠𝑖𝑛𝜃 = 𝜆/𝑑 
For small angle  

𝜃 = 𝜆/𝑑 
Also sinθ = tanθ  
From geometry of figure  

𝑡𝑎𝑛𝜃 = 𝑥/𝐷 
∴ 𝑥/𝐷 = 𝜆/𝑑 

∴ width of central maxima  
2𝑥 = 2𝜆𝐷/𝑑 

Angular width of central maxima is given by  
2𝜃 = 2𝜆/𝑑 

 

Comparison between Interference and diffraction  
(i) The interference pattern has a number of equally spaced bright and dark bands. The diffraction 
pattern has a central bright maximum which is twice as wide as the other maxima. The intensity falls as 
we go to successive maxima away from the centre, on either side.  
(ii) We calculate the interference pattern by superposing two waves originating from the two narrow 
slits. The diffraction pattern is a superposition of a continuous family of waves originating from each 
point on a single slit.  
(iii) For a single slit of width a, the first null of the interference pattern occurs at an angle of λ/a. At the 
same angle of λ/a, we get a maximum (not a null) for two narrow slits separated by a distance a.  
 

Solved numerical 
 
Q)Angular width of central maximum in diffraction obtained by single slit using light of wavelength 
6000Å is measured. If light of another wavelength is used, the angular width of the central maximum is 
found to be decreased by 30%. Find (i)The other wavelength (ii) If the experiment is repeated keeping 
the apparatus in a liquid, the angular width of central maxima decreases by the same amount ( 30%0, 
find its refractive index  
Solution:  
(i)Angular fringe width or angular separation between fringes is  

2𝜃 = 2𝜆/𝑑 
For first light  

𝜃1 = 𝜆1/𝑑 
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For second light  
𝜃2 = 𝜆2/𝑑 

𝜃2/𝜃1 = 𝜆2/𝜆1 
But θ2 is 70% of θ1  
That is , θ2 = 0.7 θ1  

∴ 0.7 = 𝜆2/𝜆1 
𝜆2 = 0.7 × 6000 = 4200 Å 

 

 
Resolving power of optical instrument  
 
When a beam of light ( light waves) from a point like object passes through the objective of an optical 
instruments, the lens acts like a circular aperture and produces a diffraction pattern instead of sharp 
point image.                                                                                                                                                                               
If there are two point objects kept closed to each other, their diffraction pattern may overlap. Then it 
may be difficult to distinguish them as separate.                                                                                                   
The criterion to get distinct and separate images of two closely placed point like objects was given by 
Rayleigh                                                                                                                                                                                 
“ The images of two point like objects can be seen as separate if the central maximum in the diffraction 
pattern of one falls either on the first minimum of the diffraction pattern of the other or it is at grater 
separation”                                                                                                                                                                                  
For the case of circular aperture diffraction due to lens of diameter D. Rayleigh’s criterion is given by  
 

𝑠𝑖𝑛𝛼 ≈ 𝛼 = 1.22𝜆/𝐷 
 

Resolving power of telescope:  
Consider a parallel beam of light falling on a convex lens. If the lens is well corrected for aberrations, 
then beam will get focused to a point .                                                                                                                                
However, because of diffraction, the beam instead of getting focused to a point gets focused to a spot of 
finite area. In this case the effects due to diffraction can be taken into account by considering a plane 
wave incident on a circular aperture followed by a convex lens.                                                                                   
Taking into account the effects due to diffraction, the pattern on the focal plane would consist of a 
central bright region surrounded by concentric dark and bright rings. 

 
If two stars are very close to each other separated by angle α will be very small and the diffraction 
pattern of both stars will mingle with each other. In this situation it is difficult to see both the stars 
distinctly and clearly                                                                                                                                                         
“Ability of an optical instrument to produce distinctly separate images of two closely placed objects is 
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called its resolving power”                                                                                                                                                                      
It is clear that for optical instruments resolving power depends on angle α . is a minimum angle to see 
two images distinctly  

𝛼𝑚𝑖𝑛 = 1.22𝜆/𝐷 
Here D is diameter of lens and λ is wavelength  
Width of the central maxima or radius is given by  

𝛼𝑚𝑖𝑛𝑓 = 1.22𝜆/𝐷𝑓 
Here αmin is known as angular resolution of the telescope, while its inverse is known as resolving power 
or geometrical resolution  
Thus resolving power of telescope  

1/𝛼𝑚𝑖𝑛 = 𝐷/1.22𝜆 
 

Solved numerical 
 
Q) Calculate the useful magnifying power of a telescope of 11cm objective. The limit of resolution of eye 
is 2’ and wavelength of light used is 5000Å  
Solution  
The magnifying power of a telescope is given by  
M = D/d, where D is diameter of the objective and d is diameter of eye piece  
For normal (useful) magnification, diameter of eyepiece should be equal to the diameter of the pupil de 
of the eye. Therefore, useful magnification is  
M = D/de  
From the equation of limit of resolution of telescope  

𝑑𝜃 = 1.22𝜆/𝐷 
𝑑𝜃 = 1.22 × 5500 × 10−10/11 × 10−2 = 6.1 × 10−6 𝑟𝑎𝑑 

Limit of resolution of eye is given dθ’=2’  
𝑑𝜃 ′ = 2 × 3.14/60 × 180𝑜 = 5.815 × 10−4 𝑟𝑎𝑑 

∴ Useful magnification 
𝑑𝜃′/𝑑𝜃 = 5.815 × 10−4/6.1 × 10−6 = 95.3 

 

Resolving power of microscope: 

 
Let the diameter of lens be D and its focal length be f. As object distance is usually kept greater than that 
of f . Let the image distance be v. the angular width of central maximum due to the effect of diffraction 
is ,  

𝜃 = 1.22𝜆/𝐷 
Width of central maximum  

𝜃𝑣 = 1.22𝜆/𝐷 𝑣 
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If image of two point like objects are at a separation les than vθ, then it will be seen as a mixed single 
object. It can be proved that a minimum distance (dm) for which objects can be seen separately is given 
by  

𝑑𝑚 = 𝜃 𝑣/𝑚 
Here m is magnification m=v/f substituting value of m we get dm  

𝑑𝑚 = 𝜃 𝑣/𝑣⁄𝑓  = 𝜃𝑓 
Substituting value of θ we get  

𝑑𝑚 = 1.22𝜆/𝐷 𝑓 
From figure D/2 =f (tanβ )  
D = 2f (tanβ ) substituting value in above equation we get  

𝑑𝑚 = 1.22𝜆/2𝑓𝑡𝑎� � 𝛽 𝑓 = 1.22𝜆/2𝑡𝑎𝑛𝛽 
For small angles tanβ = sinβ  
Reciprocal of dm known as Resolving Power(RP) of microscope 
 

𝑅𝑃 = 1 𝑑𝑚 = 2sinβ/1.22𝜆 
If some medium with large refractive index (n) is used between object and objective resolving power of 
microscope increases n times  
Formula for resolving power is given by  

𝑅𝑃 = 2𝑛sinβ/1.22𝜆 
Here term nsinβ is known as ‘Numerical Aperture”. Resolving power is inversely proportional to 
wavelength.  
 

Polarization  
The phenomena of reflection, refraction, interference, diffraction are common to both transverse waves 
and longitudinal waves. But the transverse nature of light waves is demonstrated only by the 
phenomenon of polarization.  
 
Unpolarized light  

In an ordinary light source like bulb, there are large numbers of atomic emitters. They all emit 
electromagnetic waves with there Electrical vector E , vibrating randomly in all directions perpendicular 
to direction of propagation.                                                                                                                                                       
It means that vector E of one wave is not parallel to Vector E of another wave. Wave emitted by 
different atom is of source propagate in same direction constitute beam of light.                                 
If such beam is assumed to be coming out of paper, light vectors (E) of its waves will be found in all 
random direction in a plane of paper. Such light is called Unpolarized light.  
“ In a beam of light, if the oscillations of E vectors are in all direction in a plane perpendicular to the 
direction of propagation, then the light is called unpolarized light”  
 

Polarized light  
If in beam of light all electric vector (E) are coplanar and parallel to each other is plane polarized light 
Process by which getting the plane polarized light from unpolarized light is called 

polarization  
“ The plane containing the direction of the beam and 
the direction of oscillation of E vectors is called the 
plane of oscillation . In figure abcd is the plane of 
oscillation 
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“A plane perpendicular to the plane of oscillation 
and passing through the beam of light is called the 
plane of polarization” 
 
 
 
 
In figure lmno is the plane of polarization  
 
When light passes through tourmaline crystal 

,freely transmit the light components which are polarized to a definite direction. While crystal absorbs 
light strongly whose polarization is perpendicular to this definite direction. Thus emergent beam iof light 
only coplanar and parallel E vectors are found. This definite direction in a crystal is known as an optic 
axis  
 

Malus’ Law  
If the light from an ordinary source (like a sodium lamp) passes through a polaroid sheet P1, it is 
observed that its intensity is reduced by half. Rotating P1 has no effect on the transmitted beam and 
transmitted intensity remains constant.  
Now, let an identical piece of polaroid P2 be placed before P1. On rotating P2 has a dramatic effect on the 
light coming from P2.  
In one position, the intensity transmitted by P2 followed by P1 is nearly zero. When turned by 90o from 
this position, P1 transmits nearly the full intensity emerging from P2  
An optic axis of plate P2 makes an angle of θ with that of the plate P1. In this situation vector E emerging 
from plate P1 (E0) makes angle θ with an optic axis of plate B. therefore we can resolve them into two 
components  
(1) E0cosθ parallel to the optic axis of plate P2 and  
(2) E0sinθ perpendicular to the optic axis of plate P2 

 
Thus, only E0cosθ components will emerge out of plate P2 , while perpendicular components are 
absorbed. Since intensity is proportional to the square of amplitude, intensity of light incident on plate 
P2 is  

𝐼 ∝ 𝐸0
2 𝑐𝑜𝑠2𝜃 

∴ 𝐼/𝐼0 = 𝑐𝑜𝑠2𝜃 
∴ 𝐼 = 𝐼0𝑐𝑜𝑠

2 𝜃 
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This equation is known as Malus Law. It is obvious from above equation that if plate P2 is completely 
rotated, twice the intensity of emerging light is zero , corresponding to θ =π/2 and 3π/2 and twice it 
become maximum corresponding to θ = 0 and θ =π.  
This procedure will help us to verify whether the given light is polarized or not. Since plate P2 is used to 
analyze a state of polarization of incident light, it is known as Analyzer.  
 
 
 
 

Solved numerical 
 
Q) A ray of light travelling in water is incident on a glass plate immersed in it. What the angle of incident 
is 51o the reflected ray is totally plane polarized. Find the refractive index of glass. Refractive index of 
water is 1.33  
Solution:  
Angle of incidence θP = 51o  
Since at this incidence angle, reflected ray is totally plane polarized, using Brewster’slaw refractive index 
of glass w.r.t. water is  
n’ = tan θP = tan51 = 1.235  
But refractive index n’ =  

𝑛 ′ = 𝑅𝐼. 𝑔𝑙𝑎𝑠𝑠(𝑛𝑔)/𝑅. 𝑖. 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟(𝑛𝑤) 
ng = n’ nw = 1.235 × 1.33 = 1.64  
 

Brewster’s law  
Sir David Brewster conducted a series of experiments with different reflectors and found a simple 
relation between the angle of polarization and the refractive index of the medium. It has been observed 
experimentally that the reflected and refracted rays are at right angles to each other, when the light is 
incident at polarizing angle. 
From Fig, ip +900 + r = 1800  
r = 900 – ip  
From Snell’s law,  

𝑠𝑖𝑛𝑖𝑝/𝑠𝑖𝑛𝑟 = 𝜇 
where μ is the refractive index of the medium (glass)  
Substituting for r, we get  

𝑠𝑖𝑛𝑖𝑝/𝑠𝑖(90 − 𝑖𝑝) = 𝑠𝑖𝑛𝑖𝑝/𝑐𝑜𝑠𝑖𝑝 = 𝜇 
∴ tan ip = μ 

Tangent of polarizing angle is numerically equal to refractive index of medium  
 

Polarisation by scattering  
The light from a clear blue portion of the sky shows a rise and fall of intensity when viewed through a 
Polaroid which is rotated. This is nothing but sunlight, which has changed its direction (having been 
scattered) on encountering the molecules of the earth’s atmosphere 
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As shown in figure, the incident sunlight is unpolarised. The dots stand for polarisation perpendicular to 
the plane of the figure. The double arrows show polarisation in the plane of the figure. There is no phase 
relation between these two in unpolarised light.  
Under the influence of the electric field of the incident wave the electrons in the molecules acquire 
components of motion in both these directions.  
We have drawn an observer looking at 90° to the direction of the sun. Clearly, charges accelerating 
parallel to the double arrows do not radiate energy towards this observer since their acceleration has no 
transverse component. The radiation scattered by the molecule is therefore represented by dots. It is 
polarized perpendicular to the plane of the figure. This explains the polarization of scattered light from 
the sky.  
 

Fresnel distance, ray optics is a limiting case of wave optics  
Fresnel distance is that distance from the slit at which the spreading of light due to diffraction becomes 
equal to the size of the slit. It is generally denoted by ZF  
We know that the first secondary minimum is formed at an angle θ1 such that  

𝜃1 = 𝜆/𝑑 
After travelling a distance D, the width acquired by the beam due to diffraction is Dλ/d At Fresenel 
distance ZF  

𝑍𝐹𝜆/𝑑 = 𝑑 
𝑍𝐹 = 𝑑2/𝜆 

If the distance D between the slit and the screen is less than Fresnel distance ZF then the diffraction 
effects may be regarded as absent. So, ray optics may be regarded as limiting case of wave optics  
 

Solved Numerical 
 
Light of wave length 600nm is incident on an aperture of size 2mm. calculate the distance upto which 
the ray of light can travel such that its spread is less than the size of the aperture  
Solution 

𝑍𝐹 = 𝑑2/𝜆 = (2 × 10−3 )2/600 × 10−9 = 6.67 𝑚 
 

Doppler effect for light  
If there is no medium and the source moves away from the observer, then later wavefronts have to 
travel a greater distance to reach the observer and hence take a longer time. The time taken between 
the arrival of two successive wavefronts is hence longer at the observer than it is at the source.  
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Thus, when the source moves away from the observer the frequency as measured by the source will be 
smaller. This is known as the Doppler effect.  
Astronomers call the increase in wavelength due to doppler effect as red shift since a wavelength in the 
middle of the visible region of the spectrum moves towards the red end of the spectrum.  
When waves are received from a source moving towards the observer, there is an apparent decrease in 
wavelength, this is referred to as blue shift.  
For velocities small compared to the speed of light, we can use the same formulae which we use for 
sound waves. The fractional change in frequency Δν/ν is given by –Vradial/c, where Vradial is the 
component of the source velocity along the line joining the observer to the source relative to the 
observer; Vradial is considered positive when the source moves away from the observer. Thus, the 
Doppler shift can be expressed as:  

∆𝑣/𝑣 = − 𝑉𝑟𝑎𝑑𝑖𝑎𝑙/𝑐 
 

 
 
 
 

Solved numerical 
 
Q) Certain characteristic wavelengths of the light from a galaxy in the constellation Virgo are observed 
to be increased in wave length, as compaired with terrestrial sources, by 0.4%. What is the radial speed 
of this galaxy with respect to the earth? Is it approaching or receding?  
Solution  
From formula  

∆𝑣/𝑣 = − 𝑉𝑟𝑎𝑑𝑖𝑎𝑙/𝑐 
We know that  

∆𝑣/𝑣 = − ∆𝜆/𝜆 
Thus  

∆𝜆/𝜆 = 𝑉𝑟𝑎𝑑𝑖� � 𝑙/𝑐 
Given : Δλ/λ = 0.004  

𝑉𝑟𝑎𝑑𝑖𝑎𝑙 = ∆𝜆/𝜆 𝑐 
𝑉𝑟𝑎𝑑𝑖𝑎𝑙 = 0.004 × 3 × 108 = 1.2 × 106 𝑚𝑠 −1 

Since vradial is positive therefore galaxy is receding 


