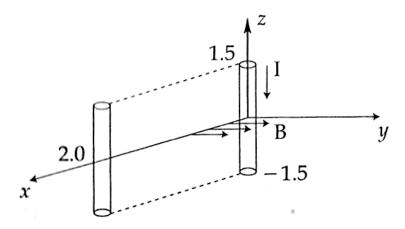


Questions and Solutions.

PART- A: PHYSICS


Q.1 The pressure that has to be applied to the ends of a steel wire of length 10 cm to keep its length constant when its temperature is raised by 100°C is :

(For steel Young's modulus is $2 \times 10^{11} \text{ Nm}^{-2}$ and coefficient of thermal expansion is $1.1 \times 10^{-5} \text{ k}^{-1}$)

- a. $2.2 \times 10^7 \, \text{Pa}$
- b. $2.2 \times 10^6 \, \text{Pa}$
- c. $2.2 \times 10^8 \, \text{Pa}$
- d. $2.2 \times 10^9 \, \text{Pa}$

Answer:3

Q.2 A conductor lies along the z-axis at $-1.5 \le z < 1.5m$ and carries a fixed current of 10.0 A in - az direction (see figure). For a field B = 3.0×10^{-4} e $^{-0.2x}$ ay T, find the power required to move the conductor t constant speed to x = 2.0 m, y = 0 m in 5×10^{-3} s. Assume parallel motion along the x-axis.

- a. 14.85 W
- **b.** 29.7 W
- **C.** 1.57 W
- **d.** 2.97 W

Answer:4

- Q.3 A bob of mass m attached to an inextensible string of length I is suspended from a vertical support. The bob rotates in a horizontal circle with an angular speed ω rad/s about the vertical. About the point of suspension :
- a. angular momentum changes in direction but not in magnitude.
- b. angular momentum changes both in direction and magnitude.
- c. angular momentum is conserved.
- d. angular momentum changes in magnitude but not in direction.

Answer:1

- Q.4 The current voltage relation of diode is given by I = (e $^{1000V/T}$ 1) mA, where the applied voltage V is in volts and the temperature T is in degree Kelvin. If a student makes an error measuring ± 0.01 V while measuring the current of 5 mA at 300 K, what will be the error in the value of current in mA?
- a. 0.5 mA
- b. 0.05 mA
- c. 0.2 mA
- d. 0.02 mA

Answer:3

Q.5 An open glass tube is immersed in mercury in such a way that a length of 8 cm extends above the mercury level. The open end of the tube is then closed and sealed and the tube is raised vertically up by additional 46 cm. What will be length of the air column above mercury in the tube now?

(Atmospheric pressure = 76 cm of Hg)

- a. 38 cm
- b. 6 cm
- c. 16 cm
- d. 22 cm

Answer:1

- Q.6 A parallel plate capacitor is made of two circular plates separated by a distance of 5 mm and with a dielectric of dielectric constant 2.2 between them. When the electric field in the dielectric is 3 x 10^4 V/m, the charge density of the positive plate will be close to :
- a. $3 \times 10^4 \text{ C/m}^2$
- b. $6 \times 10^4 \text{ C/m}^2$
- c. $6 \times 10^{-7} \text{ C/m2}$
- d. $3 \times 10^{-7} \text{ C/m}^2$

Answer:3

- $\mathbf{Q.7}$ A student measured the length of a rod and wrote it as 3.50 cm. Which instrument did he use to measure it ?
- a. A screw gauge having 100 divisions in the circular scale and pitch as 1 mm
- b. A screw gauge having 50 divisions in the circular scale and pitch as 1 mm.
- c. A meter scale.
- d. A vernier calliper where the 10 divisions in vernier scale matches with 9 division in main scale & main scale has 10 divisions in 1 cm.

Q.8 In a large building, there are 15 bulbs of 40 W, 5 bulbs of 100 W, 5 fans of 80 W and 1 heater of 1 kW. The voltage of the electric mains is 220 V. The minimum capacity of the main fuse of the building will be:

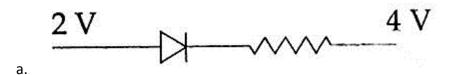
- b. 14 A
- c. 10 A
- d. 8 A

Answer 1

Q.9 A particle moves with simple harmonic motion in a straight line. In first τ s, after starting from rest it travels a distance a, and in next τ s it travels 2a, in same direction, then :

- a. amplitude of motion is 4a
- b. time period of oscillations is 6τ
- c. amplitude of motion is 3a
- d. time period of oscillations is 8τ

Answer:2


Q.10 The coercivity of a small magnet where the ferromagnet gets demagnetized is 3×10^3 A m⁻¹ The current required to be passed in a solenoid of length 10 cm and number of turns 100, so that the magnet gets demagnetized when inside the solenoid, is :

- a. 3 A
- b. 6 A
- c. 30 mA
- d. 60 mA

Answer:1

Q.11 The forward biased diode connection is :

 $\frac{-2 \text{ V}}{}$

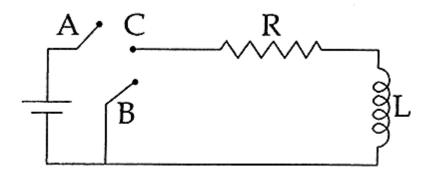
b.

$$+2V$$
 $-2V$

c.

$$-3V$$
 $-3V$

d. =


Answer:3

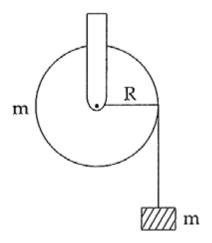
$Q.12\,$ During the propagation of electromagnetic waves in a medium :

- a. Electric energy density is equal to the magnetic energy density.
- b. Both electric and magnetic energy densities are zero.
- c. Electric energy density is double of the magnetic energy density.
- d. Electric energy density is half of the magnetic density.

Q.13 In the circuit shown here, the point 'C' is kept connected to point 'A' till the current flowing through the circuit becomes constant. Afterward, suddenly, point 'C' is disconnected from point 'A' and connected to point 'B' at time t=0. Ratio of the voltage across resistance and the inductor at t=L/R will be equal to :

 α . -1

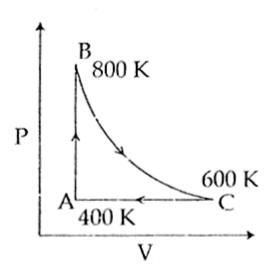
 β . 1– e/e


c. e/1-e

d. 1

Answer:1

Q.14 A mass 'm' is supported by a massless string wound around a uniform hollow cylinder of mass m and radius R. If the string does not slip on the cylinder, with what acceleration will the mass fall on release?



- **a.** 5g/6
- **b.** G
- **C.** 2g/3
- **d.** g/2

Answer:4

Q.15 One mole of diatomic ideal gas undergoes a cyclic process ABC as shown in figure. The process BC is adiabatic. The temperatures at A, B and C are 400 K, 800 K and 600 K respectively. Choose the correct statement:

- **a.** The change in internal energy in the process AB is 350 R
- **b**. The change in internal energy in the process BC is 500 R.
- **C** The change in internal energy in whole cyclic process is 250 R
- The change in internal energy in the process CA is 700 R.

Answer:2

Q.16 From a tower of height H, a particle is thrown vertically upwards with a speed U. The time taken by the particle, to hit the ground, is n times that taken by it to reach the highest point of its path. The relation between H, u and n is

a.
$$2 g H = nu^2 (n - 2)$$

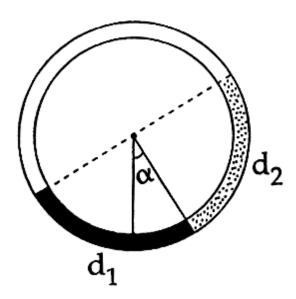
b. g H =
$$(n - 2) u^2$$

c. 2 g H =
$$n^2$$
 u 2

d. g H =
$$(n-2)^2$$
 u 2

Q.17 Three rods of Copper, Brass and Steel are welded together to form a Y-shaped structure. Area of crosssection of each rod = 4 cm 2 . End of copper rod is maintained at 100 °C where as ends of brass and steel are kept at 0 °C. Lengths of the copper, brass and steel rods are 46, 13 and 12 cms respectively. The rods are thermally insulated from surroundings except at ends. Thermal conductivities of copper, brass and steel are 0.92, 0.26 and 0.12 CGS units respectively. Rate of heat flow through copper rod is :

- a. 4.8 cal/s
- 6.0 cal/s
- 1.2 cal/s
- 2.4 cal/s


Answer:1

 $Q.18\,$ A pipe of length 85 cm is closed from one end. Find the number of possible natural oscillations of air column in the pipe whose frequencies lie below 1250 Hz. The velocity of sound in air is 340 m/s.

- a. 6
- b. 4
- c. 12
- d. 8

Q.19 There is a circular tube in a vertical plane. Two liquids which do not mix and of densities d_1 and d_2 are filled in the tube. Each liquid subtends 90° angle at centre. Radius joining their interface makes an angle α with vertical. Ratio d_1/d_2 is

a. 1+ tan $\alpha/1$ - tan α

b. . 1+ $\sin \alpha/1$ - $\cos \alpha$

c. 1+ $\sin \alpha/1$ - $\sin \alpha$

d. 1+ $\cos \alpha/1$ - $\cos \alpha$

Answer:1

Q.20 A green light is incident from the water to the air - water interface at the critical angle (0). Select the correct statement.

a. The spectrum of visible light whose frequency is more than that of green light will come out to the air medium.

b. The entire spectrum of visible light will come out of the water at various angles to the normal.

- c. The entire spectrum of visible light will come out of the water at an angle of 90° to the normal.
- d. The spectrum of visible light whose frequency is less than that of green light will come out to the air medium.

Answer:4

Q.21 The radiation corresponding to 3 \rightarrow 2 transition of hydrogen atom falls on a metal surface to produce photoelectrons. These electrons are made to enter a magnetic field of 3 \times 10⁻⁴ T. If the radius of the largest circular path followed by these electrons is 10.0 mm, the work function of the metal is close to :

- a. 0.8 eV
- b. 1.6 eV
- c. 1.8 eV
- d. 1.1 eV

Answer:4

Q.22 A block of mass m is placed on a surface with a vertical cross section given by y = $x_3/6$. If the coefficient of friction is 0.5, the maximum height above the ground at which the block can be placed without slipping is

a. 1/3 m

½ m

1/6 m

2/3m

Q.24 Two beams, A and B, of plane polarized light with mutually perpendicular planes of polarization are seen through a polaroid. From the position when the beam A has maximum intensity (and beam B has zero intensity), a rotation of polaroid through 30° makes the two beams appear equally bright. If the initial intensities of the two beams are IA and IB respectively, then I_A/I_A equals:

- a. 1
- b. 1/3
- c. 3
- d. 3/2

Answer:2

Q.25 Assume that an electric field E = 30x 2 i exists in space Then the potential difference V_A – V_O , where V_O is the potential at the origin and V_A the potential at x = 2 m is :

- a. 80 J
- b. 80 J
- c. 120 J
- d. -120 J

Answer 1

PART-B: MATHEMATICS

Q.26 If $a \in R$ and the equation $-3(x-[x])^2+2(x-[x])+a^2=0$

(where [x] denotes the greatest integer \leq x) has no integral solution, then all possible values of a lie in the interval:

a. $(-1, 0) \cup (0, 1)$

b. (1, 2)

c. (-2, -1)

d. $(-\infty, -2) \cup (2, \infty)$

Answer: 1

Q.27 The variance of first 50 even natural numbers is:

a. 833/4

b. 833

c. 437

d. 437

Answer:2

Q.28 A bird is sitting on the top of a vertical pole 20 m high and its elevation from a point O on the ground is 45°. It flies off horizontally straight away from the point O. After one second, the elevation of the bird from O is reduced to 30°. Then the speed (in m/s) of the bird is:

a.
$$40(\sqrt{2}-1)$$

b.
$$40(\sqrt{3}-\sqrt{2})$$

c. 20√2

d.
$$20(\sqrt{3}-1)$$

Q.29 The statement \sim (p $\leftrightarrow \sim$ q) is:

- a. equivalent to $p \leftrightarrow q$
- b. equivalent to $\sim p \leftrightarrow q$
- c. a tautology
- d. a fallacy

Answer:1

Q.30 If A is an 3×3 non – singular matrix such that AA' = A'A and B = A-1 A', then BB' equals:

- **a.** I + B
- b. I
- c. B^{-1}
- d. (B-1)'

Answer:2

Q.31 If z is a complex number such that $|z| \ge 2$, then the minimum value of $|z + \frac{1}{2}|$

- a. is equal to 5/2
- b. lies in the interval (1, 2)
- c. is strictly greater than 5/2
- d. is strictly greater than 3/2 but less than 5/2

Answer:2

Q.32 If g is the inverse of a function f and f' (x) = $1/1+x^{5'}$ then g' (x) is equal to :

a.
$$1 + x^5$$

c.
$$1/1+\{g(x)\}^5$$

d.
$$1 + {g(x)}^5$$

Answer:4

Q.33 Let $f_k(x) = 1/k$ (sin^k $x + \cos^k x$), where $x \in R$ and $k \ge 1$. Then $f_6(x) = f_6(x)$ equals :

- a. 1/6
- b. 1/3
- c. 1/4
- d. 1/12

Answer:4

Q.34 Let α and β be the roots of equation $px^2 + qx + r = 0$, $p \neq 0$. If p, q, r are in A.P. and $1/\alpha + 1/\beta = 4$ then the value of $|\alpha - \beta|$ is :

- a. √61/9
- b. 2v17/9
- c. √34/9
- d. 2v13/9

Answer:4

Q.35 If f and g are differentiable functions in [0, 1] satisfying f(0) = 2 = g(1), g(0) = 0 and f(1) = 6, hen for some $c \in]0, 1[$:

a.
$$2f'(c) = g'(c)$$

b.
$$2f'(c) = 3g'(c)$$

c.
$$f'(c) = g'(c)$$

$$d. f'(c) = 2g'(c)$$

Answer:4

Solve Given,
$$f(0) = 2$$
, $g(1) = 2$, $g(0) = 0$, $f(1) = 6$

Let,
$$F(x) = f(x) - 2g(x)$$

$$F(0) = f(0) - 2g(0)$$

$$F(0) = 2 - 2 \times 0$$

$$F(0) = 2$$

$$F(1) = F(1) - 2g(1)$$

$$F(1) = 6 - 2 \times 2$$

$$F(1) = 2$$

F(x) is continuous and differentiable in [0, 1]. F(0) = F(1)

So, according to Rolle's theorem, there is at least are root between 0 and 1. At which F'(x) = 0. f'(x) - 2g'(x) = 0 f'(c) - 2g'(c) = 0 f'(c) = 2g'(c)

Q.36 Let the population of rabbits surviving at a time t be governed by the differential equation $dp(t)/dt = \frac{1}{2}p(t) - 200$

If p(0) = 100, then p(t) equals:

a.
$$400 - 300 e^{t/2}$$

b.
$$300 - 200 e^{-t/2}$$

c.
$$600 - 500 e^{t/2}$$

d.
$$400 - 300 e^{-t/2}$$

Answer:1

Solve: Rearranging the equation we get,

$$dp(t)/p(t) - 400 = 1/2 dt(1)$$

Integrating (1) on both sides we get

 $p(t) = 400 + k e^{t/2}$, where k is a constant of integration.

Using p(0) = 100, we get

$$k = -300$$

 \therefore the relation is p(t) = 400 - 300 e^{t/2}

Q.37 Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centred at (0, y), passing through origin and touching the circle C externally, then the radius of T is equal to

- a. $\sqrt{3}/\sqrt{2}$
- b. $\sqrt{3}/2$
- c. ½
- d. 1/4

Answer:4

Q.38 The area of the region described by A = $\{(x, y) : x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\}$ is

- a. $\pi/2+4/3$
- b. $\pi/2 4/3$

c.
$$\pi/2 - 2/3$$

d.
$$\pi/2 + 2/3$$

Answer:1

Q.39 Let a, b, c and d be non–zero numbers. If the point of intersection of the lines 4ax + 2ay + c = 0 and 5bx + 2by + d = lies in the fourth quadrant and is equidistant from the two axes then :

a.
$$2bc - 3ad = 0$$

b.
$$2bc + 3ad = 0$$

c.
$$3bc - 2ad = 0$$

$$d. 3bc + 2ad = 0$$

Answer:3

Q.40 Let PS be the median of the triangle with vertices P(2, 2), Q(6, -1) and R (7, 3). The equation of the line passing through (1, -1) and parallel to PS is :

a.
$$4x - 7y - 11 = 0$$

b.
$$2x + 9y + 7 = 0$$

c.
$$4x + 7y + 3 = 0$$

d.
$$2x - 9y - 11 = 0$$

Answer:2

Q.41 If X = {4ⁿ - 3n - 1 : n ϵ N} and Y = {9(n - 1) : n ϵ N}, where N is the set of natural numbers, then X U Y is equal to

a. N

b.
$$Y - X$$

c. X

d. y

Answer:4

Q.42 The locus of the foot of perpendicular drawn from the centre of the ellipse $x^2 + 3y^2 = 6$ on any tangent to it is:

a.
$$(x^2 - y^2) 2 = 6x^2 + 2y^2$$

b.
$$(x^2 - y^2) 2 = 6x^2 - 2y^2$$

c.
$$(x^2 + y^2) 2 = 6x^2 + 2y^2$$

d.
$$(x^2 + y^2) 2 = 6x^2 - 2y^2$$

Answer:3

Q.43 Three positive numbers form an increasing G.P. If the middle term in this G.P. is doubled, the new numbers are in A.P. Then the common ratio of the G.P. is :

- a. √2 +√3
- b. $3 + \sqrt{2}$
- c. 2 $\sqrt{3}$
- d. $2 + \sqrt{3}$

Answer:4

Q.44 If $(10)^9 + 2(11)^1 (10)8 + 3(11)^2 (10)^7 + ... + 10(11)^9 = k (10)^9$, then k is equal to :

- a. 121/10
- b. 441/100
- c. 100

d.110

Answer:3

Q.45 The angle between the lines whose direction cosines satisfy the equations A + m + n = 0 and $2 A = m^2 + n^2$ is :

- a. $\pi/3$
- b. π/4
- c. π/6
- d. π2

Answer:1

Q.~46 The slope of the line touching both the parabolas $y^2 = 4x$ and $x^2 = -32y$ is :

- a. ½
- b. 3/2
- c. 1/8
- d. 2/3

Answer:1

Q.47 If x = -1 and x = 2 are extreme points of $f(x) = \alpha \log |x| + \beta x^2 + x$ then :

- **a.** $\alpha = -6$, $\beta = 1/2$
- b. α = -6, β = -1/2
- c. α = 2, β = -1/2

d.
$$\alpha = 2$$
, $\beta = 1/2$

Answer:3

PART-C: CHEMISTRY

Q.48 Which one of the following properties is not shown by NO?

- a. It combines with oxygen to form nitrogen dioxide
- b. It's bond order is 2.5
- c. It is diamagnetic in gaseous state
- d. It is a neutral oxide

Answer:3

Q.49 If Z is a compressibility factor, van der Waals equation at low pressure can be written as:

- a. Z = 1 pb/RT
- b..Z = 1 + pb/RT
- c. Z = 1 + RT/pb
- $\mathsf{d..Z} = 1 \mathsf{a/VRT}$

Answer:4

Q.50 The metal that cannot be obtained by electrolysis of an aqueous solution of its salts is

- a. Cu
- b. Cr

- c. Ag
- d. Ca

Answer:4

Q.51 Resistance of 0.2 M solution of an electrolyte is 50 Ω . The specific conductance of the solution is 1.4 S m $^{-1}$. The resistance of 0.5 M solution of the same electrolyte is 280 Ω . The molar conductivity of 0.5 M solution of the electrolyte in S m 2 mol $^{-1}$ is

- a. 5×10^3
- b. 5×10^{2}
- c. 5×10^{-4}
- d. 5×10^{-3}

Answer:3

Q.52 Consider separate solutions of 0.500 M $C_2H_5OH(aq)$, 0.100 M $Mg_3(PO_4)2(aq)$, 0.250 M KBr(aq) and 0.125 M $Na_3PO_4(aq)$ at 25°C. Which statement is true about these solutions, assuming all salts to be strong electrolytes

- a. $0.125~M~Na_3PO_4(aq)$ has the highest osmotic pressure
- b. $0.500 \text{ M C}_2\text{H}_5\text{OH(aq)}$ has the highest osmotic pressure.
- c. They all have the same osmotic pressure.
- d. 0.100 M $Mg_3(PO_4)_2(aq)$ has the highest osmotic pressure.

Answer:3

Q.53 In which of the following reactions H_2O_2 acts as a reducing agent?

a.
$$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$$

b.
$$H_2O_2$$
 $^ 2e-\rightarrow O_2+2H^+$

c.
$$H_2O_2 + 2e^- \rightarrow 2OH-$$

d.
$$H_2O_2 + 2OH^- - 2e^- \rightarrow O_2 + 2H_2O$$

Answer:2

 $Q.54\,$ In S_n 2 reactions, the correct order of re activity for the following compounds :

CH₃Cl, CH₃CH₂Cl, (CH₃)₂CHCl and (CH₃)₃CCl is:

- a. $CH_3CH_2CI > CH_3CI > (CH_3)_2CHCI > (CH_3)_3CCI$
- b. $(CH_3)_2CHCI > CH_3CH_2CI > CH_3CI > (CH_3)_3CCI$
- c. $CH_3CI > (CH_3)_2CHCI > CH_3CH_2CI > (CH_3)_3CCI$
- d. $CH_3CI > CH_3CH_2CI > (CH_3)_2CHCI > (CH_3)_3CCI$

Answer:4

Q.55 For the estimation of nitrogen, 1.4 g of an organic compound was digested by Kjeldahl method and the evolved ammonia was absorbed in 60 mL of M/10 sulphuric acid. The unreacted acid required 20 mL of M/ 10 sodium hydroxide for complete neutralization. The percentage of nitrogen in the compound is :

- a. 3 %
- b. 5 %
- c. 6 %
- d. 10 %

Answer:4

Q.56 The equivalent conductance of NaCl at concentration C and at infinite dilution are λ_C and λ_∞ , respectively. The correct relationship between λ_C and λ_∞ is given as : (where the constant B is positive)

a.
$$\lambda_c = \lambda_{\infty} \infty$$
 (B) \forall C

b.
$$\lambda_c = \lambda_{\infty} + (B)VC$$

c.
$$\lambda_c = \lambda_{\infty} + (B)C$$

d.
$$\lambda_C = \lambda_{\infty}$$
 -(B)C

Answer:1

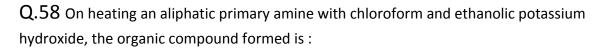
Q.57 Sodium phenoxide when heated with CO_2 under pressure at 125°C yields a product which on acetylation produces C.

$$\bigcirc -ONa + CO_2 \xrightarrow{125^{\circ}} B \xrightarrow{H^+} C$$

The major product C would be:

a.

b.


-COOH

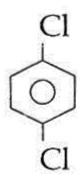
c.

d.

Answer:3

- a. an alkyl cyanide
- b. an alkyl isocyanide
- c. an alkanol
- d. an alkanediol

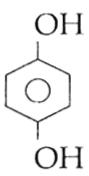
Answer:2


Q.59 The correct statement for the molecule, Csl_3 , is:

- a. it contains Cs^{3+} and I^- ions.
- b. it contains Cs^+ , I^- and lattice I_2 molecule.
- c. it is a covalent molecule.
- d. it contains Cs⁺ and 3I ⁻ ions.

Answer:4

Q.60 For which of the following molecule significant $\mu \neq 0$?




a.

b.

c.

1. Only (c)

- 2. (c) and (d)
- 3. Only (a)
- 4. (a) and (b)

Answer:2

Q.61 For the non-stoichiometre reaction 2A + B \rightarrow C + D, the following kinetic data were obtained in three separate experiments, all at 298 K.

Initial concentration (A)	Initial Concentration (B)	Initial rate of formation of C	
		(mol L ⁻ S ⁻)	
0.1 M	0.1 M	1.2×10^{-3}	
0.1 M	0.2 M	1.2×10^{-3}	
0.2 M	0.1 M	2.4×10^{-3}	

The rate law for the formation of C is:

- a. $dc/dt = k[A][B]^2$
- b. dc/dt = K[A]
- c. dc/dt = K[A][B]
- d. $dc/dt = K[A]^2[B]$

Answer:2

Q.62 Considering the basic strength of amines in aqueous solution, which one has the smallest pK $_{\text{b}}$ value?

- a. (CH₃)₃N
- $b.\ C_6H_5NH_2$
- c. $(CH_3)_2NH$
- d. CH₃NH₂

Answer:3

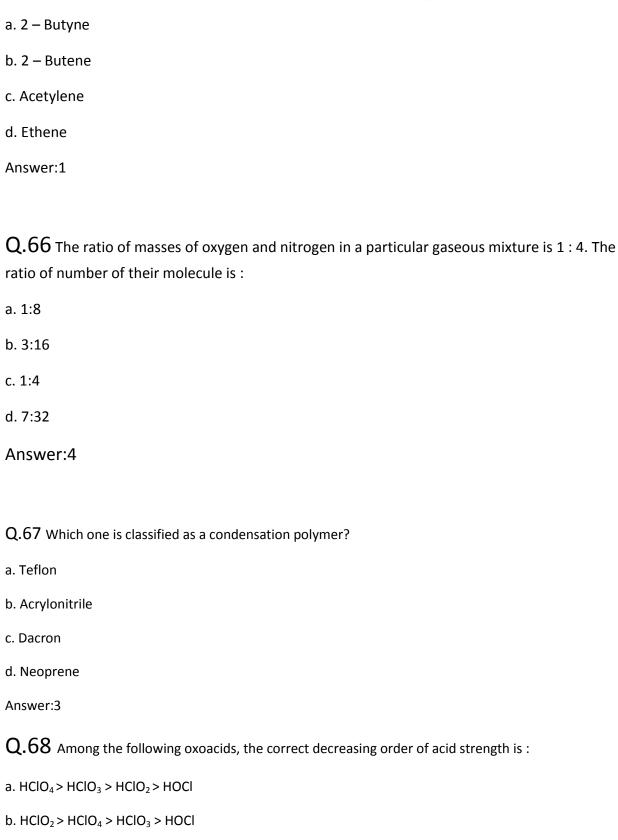
Solve: Less is the pKb value, more is the basic strength. Order of basic strength in aq. medium is

 $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > C_6H_5NH_2$

0.63 Which one of the following bases is not present in DNA?

- a. Cytosine
- b. Thymine
- c. Quinoline
- d. Adenine

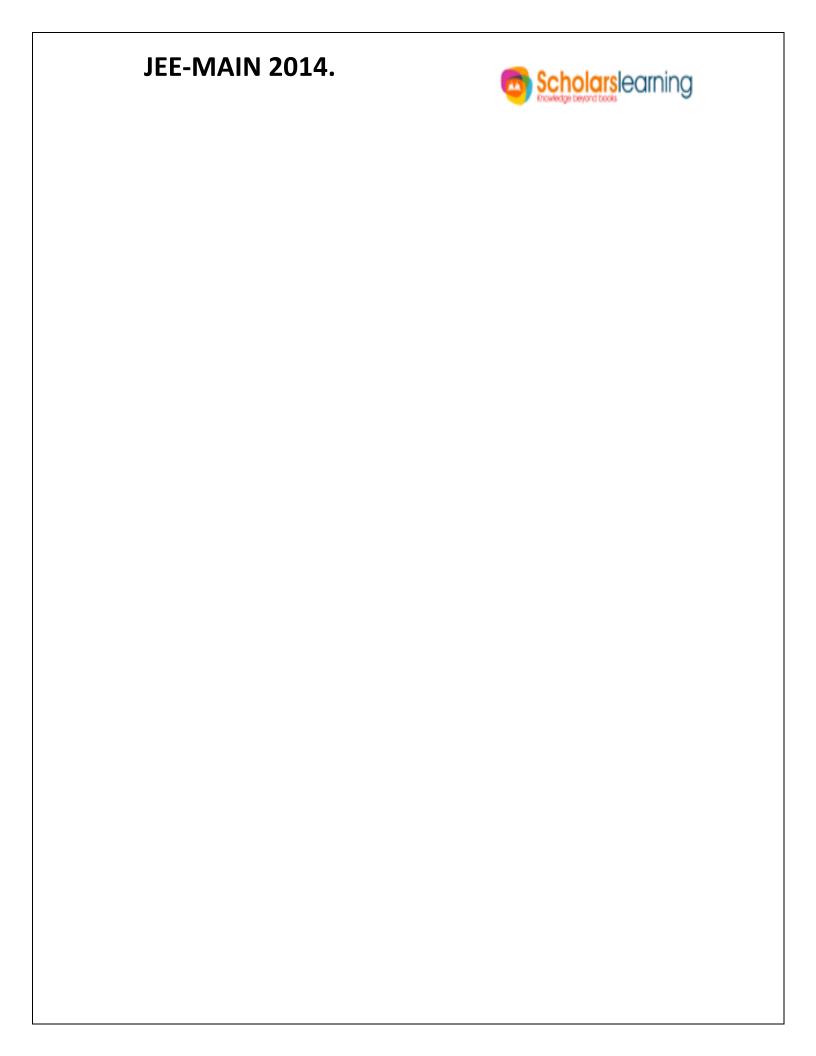
Answer:3


Q.64 The correct set of four quantum numbers for the valence electrons of rubidium atom (Z = 37) is :

- a. 5, 1, 1, + ½
- b. 5, 0, 1 + ½
- c. 5, 0, 0, $+\frac{1}{2}$
- d. 5,1, 0, + ½

Answer:3

Q.65 The major organic compound formed by the reaction of 1, 1, 1 – trichloroethane with silver powder is :


c. $HOCl > HClO_2 > HClO_3 > HClO_4$		
d. HClO ₄ > HOCl > HClO ₂ > HClO ₃		

Q.69 The most suitable reagent for the conversion of R CH_2 - $\text{OH} \! \to \text{R-}$ CHO is:

a. CrO₃

Answer:1

- b. PCC (Pyridinium Chlorochromate)
- c. $KMnO_4$
- d. K₂Cr₂O₇

