

Q.1 Young's double slit experimental is carried out by using green, red and blue light, one color at a time. The fringe widths recorded are β_{G_i} β_{R} and β_{B} respectively. Then,

- a. $\beta_G > \beta_B > \beta_R$
- b. $\beta_B > \beta_G > \beta_R$
- c. $\beta_R > \beta_B > \beta_G$
- d. $\beta_R > \beta_G > \beta_B$

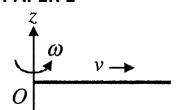
Answer:4

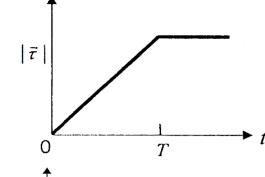
Q.2 Two large vertical and parallel metal plates having a separation of 1 cm are connected to a DC voltage source of potential difference X. A proton is released at rest midway between the two plates. It is found to move at 45° to the vertical JUST after release. Then X is nearly

- a. 1 x 10⁻⁵ V
- b. 1 x 10⁻⁷ v
- c. 1 x 10⁻⁹ V
- d. 1 x 10⁻¹⁰ V

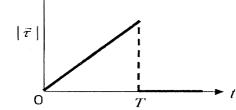
Answer:3

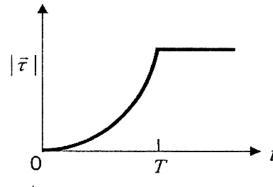
Q.3 A mixture of 2 moles of helium gas (atomic mass = 4 amu) and 1 mole of argon gas (atomic mass = 40 amu) is kept at 300 K in a container. The ratio of the r m s speeds

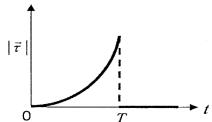

(v_{rms}(helium)/ v_{rms}(argon)) Is


- a. 0.32
- b. 0.45
- c. 2.24
- d. 3.16

Answer:4

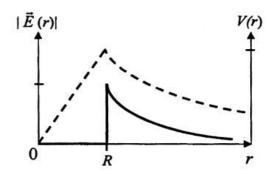

Q.4 A thin uniform rod, pivoted at O, is rotating in the horizontal plane with constant angular speed , as shown in the figure. At time t=0, a small insect starts from O and moves with constant speed v with respect to the rod towards the other end. It reaches the end of the rod at t=T and stops. The angular speed of the system remains throughout. The magnitude of the torque $| \cdot |$ on the system about O, as a function of time is best represented by which plot?



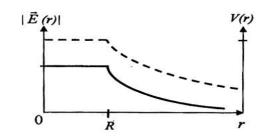

a.

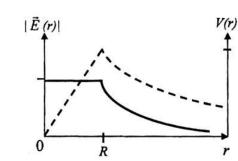
b.

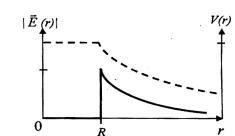
c.


d.

Answer:2


Q.5 Consider a thin spherical shell of radius R with its centre at the origin, carrying uniform positive surface charge density. The variation of the magnitude of the electric field | E(r) | and


the electric potential V(r) with the distance r from the centre, is best represented by which graph?

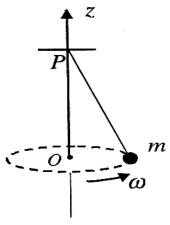

a.

b.

c.

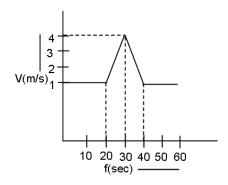
d.

Answer:4


Q.6 A person blows into open-end of a long pipe. As a result, a high-pressure pulse of air travels down the pipe. When this pulse reaches the other end of the pipe

- a. a high-pressure pulse starts traveling up the pipe, if the other end of the pipe is open
- b. a low-pressure pulse starts traveling up the pipe, if the other end of the pipe is open.
- c. a low-pressure pulse starts traveling up the pipe, if the other end of the pipe is closed.
- d. a high-pressure pulse starts traveling up the pipe, if the other end of the pipe is closed.

Answer: 2

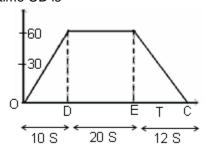

Q. 7 10. A small mass m is attached to a massless string whose other end is fixed at P as shown in the figure. The mass is undergoing circular motion in the x-y plane with centre at O and constant angular speed . If the angular momentum of the system, calculated about O and P are denoted by L_O and L_P respectively, then

- A) L_O and L_P do not vary with time.
- (B) L_O varies with time while L_P remains constant.
- (C) L_{O} remains constant while L_{P} varies with time.
- D) Lo and LP both vary with time. o

Answer:c

Q.8 Velocity-time (v - t) graph for a moving object is shown in the figure. Total displacement of the object during the time interval when there is non-zero acceleration and retardation is

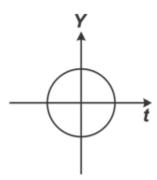
- a. 60 m
- b. 50 m
- c. 40 m
- d. 30 m

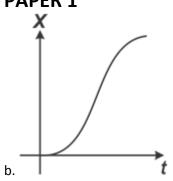

Answer:2

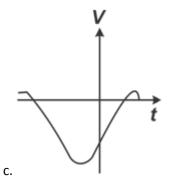
Between time interval 20 s to 40 s, there is non-zero acceleration and retardation. Hence, distance travelled during this interval

= Area between time interval 20 s to 40 s

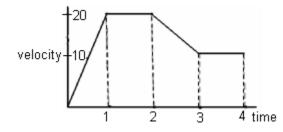
Solve:
$$=\frac{1}{2} \times 20 \times 3 + 20 \times 1 = 30 + 20 = 50 \text{ m}$$


Q.9 The velocity-time graph of a moving train is depicted in the figure. The average velocity in time OD is


- a. 30 m/s
- b. 60 m/s
- c. 45 m/s
- d. 23 m/s


Answer:1

Q.10 Look at the graphs (a) to (d) carefully and indicate which of these possibly represents one dimensional motion of a particle?

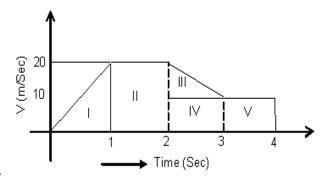


X t

Answer:2

d.

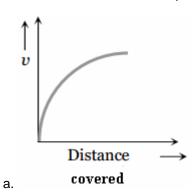
Q.11 The variation of velocity (in cm/s) of a particle going along a straight line is shown in the fig. Calculate the distance traversed in 4 seconds.

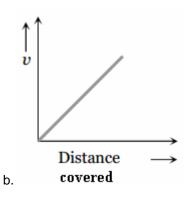

a. 25 cm

b. 55 cm

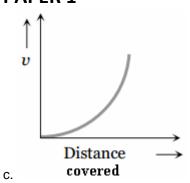
c. 105 cm

d, 20 cm Answer:2


Explanation:


The distance covered by the body in 4 sec. is equal to the area under v- t graph.

$$S = \frac{1}{2} \times 1 \times 20 + (2 - 1) \times 20 + \frac{1}{2} (3 - 2) \times (20 - 10) + (3 - 2) \times (10 - 0) + (4 - 3) \times (10 - 0)$$

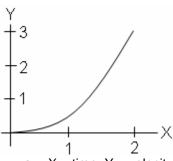

$$S = 55 \text{ m}.$$

Q.12 A lead shot of a 1mm diameter falls through a long column of glycerine. The variation of its velocity 'v' with distance covered is represented by

 $\begin{array}{c|c}
\uparrow \\
v \\
\hline
Distance \\
covered
\end{array}$

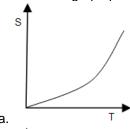
Answer:1

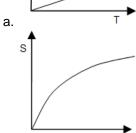
Q.13 A particle is moving with uniform acceleration along a straight line. The average velocity of the particle from P to Q is 8 m/s and from Q to S is 12 m/s. If QS = PQ, the average velocity from P to S is

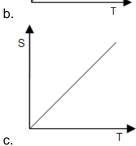


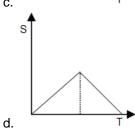
- a. 9.6 m/s
- b. 12.87 m/s
- c. 64 m/s
- d. 327 m/s

Answer:1

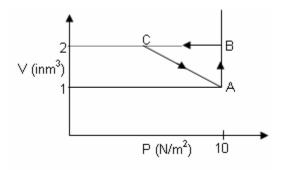

Q.14 If the figure below represents a parabola, identity the physical quantities






- a. X = time, Y = velocity
- b. X = velocity, Y = time
- c. X = time, Y = displacement
- d. X = time, Y = acceleration Answer:3

Q.15 Which graph pertains to uniform acceleration?



Answer:1

Q.16 An ideal gas is taken through the cycle A \vec{B} \vec{C} \vec{A} , as shown in figure. If the net heat supplied to the gas in the cycle is 5 J, what is the work done by the gas in the process, C \vec{A} ?

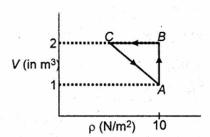
a. - 5 J

b. - 10 J

c. - 15 J

d. - 20 J

Answer:1


Process is cyclic, so change in internal energy is zero.

We know that work done by gas is given by

$$W = P\Delta V$$

where P is pressure and ΔV the change in volume.

Total work done by gas is

$$W = W_{AB} + W_{BC} + W_{CA} \qquad \dots (i)$$

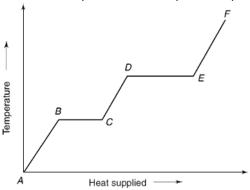
From first law of thermodynamics

$$\Delta Q = \Delta U + W$$
 ...(ii)

where ΔQ is heat supplied, ΔU the change in internal energy which is zero and W the work done.

$$W_{AB} = P\Delta V = 10 (2-1) = 10 \text{ J}$$

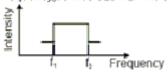
$$W_{BC}=P\Delta V=2\times 0=0$$


Hence, Eqs. (i) and (ii) will be written as

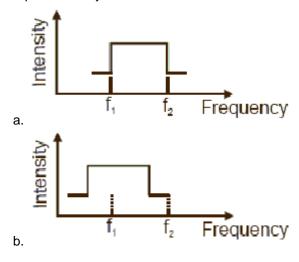
$$5 = (10 + 0 + W_{CA})$$

Solve: \Rightarrow $W_{CA} = -5J$

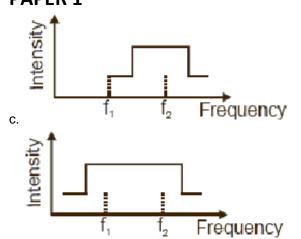
Q.17 The reciprocal of the slope of the portion EF of the graph shown below represents


- a. latent heat of fusion
- b. latent heat of vaporization
- c. thermal capacity of the liquid
- d. thermal capacity of the vapour

Answer:4


Q.18 **Directions:** The following question is based on the paragraph given below.

Two trains A and B are moving with speeds 20 m/s and 30 m/s respectively,in the same direction on the same straight track with B ahead of A. The engines are at the front ends. The engine of train A blows a long whistle.


Assume that the sound of the whistle is composed of components varying in frequency from f_1 = 800 Hz to f_2 = 1120 Hz, as shown in the figure. The spread in the frequency (highest frequency – lowest frequency) is thus, 320 Hz. The speed of sound in still air is 340 m/s.

The distribution of the sound intensity of the whistle as observed by the passengers in train A, is best represented by

d.

Answer:1

CHEMISTRY

Q.19 . The colour of light absorbed by an aqueous solution of CuSO₄ is

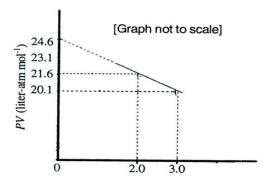
- a. orange red
- b. blue green
- c. yellow
- d. violet

Answer:1

Q.20 Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen ?

- a. HNO₃, N₀, NH₄Cl, N₂
- b. HNO₃, N₀, N₂, NH₄Cl
- c. HNO₃, NH₄Cl, NO, N₂
- d. N_O, HNO₃, NH₄Cl, N₂

Answer:2


Q.21. The number of aldol reaction(s) that occurs in the given transformation is

- a. 1
- b. 2
- c. 3
- d. 4

Answer:3

Q.22For one mole of a van der Waals gas when b = 0 and T = 300 K, the PV vs. 1/V plot is shown below. The value of the van der Waals constant a (atm. liter2 mol⁻²) is

- a. 1.0
- b. 4.5
- c. 1.5
- d. 3.0

Answer:3

Q.23 In allene (C₃H₄), the type(s) of hybridization of the carbon atoms is (are)

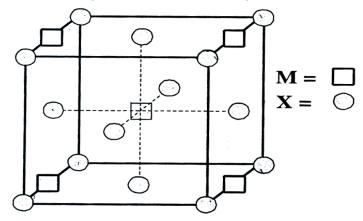
- a. sp and sp³
- b. sp and sp²
- c. only sp²
- d. sp² and sp³

Answer:2

Q.23 The number of optically active products obtained from the complete ozonolysis of the given

$$CH_3 - CH = CH - \stackrel{C}{\stackrel{}{\stackrel{}{C}}} - CH = CH - \stackrel{C}{\stackrel{}{\stackrel{}{\stackrel{}{C}}}} - CH = CH - CH_3$$

compound is


- a. 1
- b. 0
- c. 2

d. 4

Answer:1

Q.24 A compound M_pX_q has cubic close packing (ccp) arrangement of X. Its unit cell structure is shown below. The empirical formula of the compound is

- a. MX
- b. MX₂
- c. M_2X
- $d.\ M_5 X_{14}$

Answer:2

Q.25 As per IUPAC nomenclature, the name of the complex $[Co(H_2O)_4(NH_3)_2]Cl_3$ is

- a. Tetraaquadiaminecobalt (III) chloride
- b. Tetraaquadiaminecobalt (III) chloride
- c. Diaminetetraaquacobalt (III) chloride
- d. Diamminetetraaquacobalt (III) chloride

Answer:4

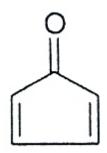
- Q.26 The carboxyl functional group (COOH) is present in
- a. picric acid

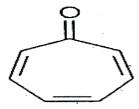
b. barbituric acid

c. ascorbic acid

d. aspirin

Answer:4


Q.27 Which of the following molecules, in pure form, is (are) unstable at room temperature?


a.

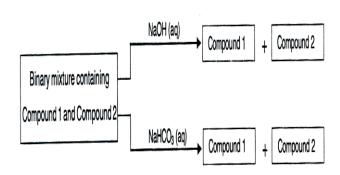
b.

С

Answer:2

Q.28 Identify the binary mixture(s) that can be separated into individual compounds, by differential extraction, as shown in the given scheme

a. C_6H_5OH and C_6H_5COOH



C₆H₅COOH and C₆H₅CH₂OH

C₆H₅CH₂OH and C₆H₅OH

C₆H₅CH₂OH and C₆H₅CH₂COOH

Answer:1

Q.29 Choose the correct reason(s) for the stability of the lyophobic colloidal particles.

- a. Preferential adsorption of ions on their surface from the solution
- b. Preferential adsorption of solvent on their surface from the solution
- c. Attraction between different particles having opposite charges on their surface
- d. Potential difference between the fixed layer and the diffused layer of opposite charges around the colloidal particles

Answer:1

Q.30 The number of oxygen atoms contained in 1000 g of water is

Answer:1

Q.31 Which of the following hydrogen halides react(s) with $AgNO_3(aq)$ to given a precipitate that dissolves in $Na_2S_2O_3(aq)$?

- a. HC
- b. HF
- c. HBr
- d. HI

Answer:1

Q.32 The reaction $v_1A + v_2B \xrightarrow{}$ products is first order with respect to A and zero-order with respect to If the reaction is started with [A]₀ and [B]₀, the integrated rate expression of this reaction would be

a.
$$\ln \frac{[A]_0}{[A]_0 - x} = k_1 t$$

b.
$$\ln \frac{[A]_0}{[A]_0 - v_1 x} = k_1 t$$

c.
$$\ln \frac{[A]_0}{[A]_0 - v_1 x} = v_1 k_1 t$$

d.
$$\ln \frac{[A]_0}{[A]_0 - x} = v_1 k_1 t$$

Answer:3

PART III – MATHEMATICS

Q.33 The point P is the intersection of the straight line joining the points Q(2, 3, 5) and R (1,-1, 4) with the plane 5x - 4yz = 1. If S is the foot of the perpendicular drawn from the point T(2, 1, 4) to QR, then the length of the line segment PS is

- a. 1/√2
- b. √2
- c. 2

2√2

Answer:1

Q.34 Let z be a complex number such that the imaginary part of z is nonzero and $a = z^2 + z + 1$ is real. Then a cannot take the value

- a. -1
- b. 1/3
- c. ½
- d. ¾

Answer:4

Q.35 The total number of ways in which 5 balls of different colours can be distributed among 3 persons so that each person gets at least one ball is

- a. 75
- b. 150
- c. 210
- d. 243

Answer:2

Q.36 The function f: $[0, 3] \rightarrow [1, 29]$, defined by $f(x) = 2x^3 15x^2 + 36x + 1$, is

- a. one-one and onto
- b. onto but not one-one.
- c. one-one but not onto.
- d. neither one-one nor onto.

Answer:2

Q.37 . The locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line 4x-5y=20 to the circle $x^2+y^2=9$ is

a.
$$20(x^2 + y^2) 36x + 45y = 0$$

b.
$$20(x^2 + y^2) + 36x 45y = 0$$

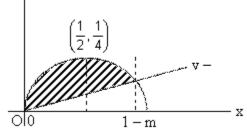
c.
$$36(x^2 + y^2) 20x + 45y = 0$$

d.
$$36(x^2 + y^2) 20x 45y = 0$$

Answer:1

Q.38 Let P = [aij] be a 3x 3 matrix and let Q = [bij], where $bij = \frac{2i+j}{aij}$ for $1 \le i$, $j \le 3$. If the determinant of P is 2, then the determinant of the matrix Q is

- a. 2¹⁰
- b. 2¹¹
- c. 2¹²
- d. 2¹³


Answer:4

Q.39 For which of the following values of m, is the area of the origin bounded by the curve $y = x - x^2$ and the line y = mx equals 9/2?

- a. -4
- b. -2
- c. 2
- d. 4

Answer:3

Solve The equation of curve is $y = x - x^2$ which implies $x^2 - x = -y$ which implies $(x - \frac{1}{2})^2 = -(y - \frac{1}{4})$.

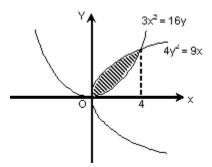
This is parabola whose vertex is $(1/2, \frac{1}{4})$.

Hence, point of intersection of the curve and the line $x - x^2 = mx$ which implies x(1 - x - m) = 0 i.e., x = 0

or
$$x = 1 - m$$

Q.40 The area enclosed between the curves $y = ax^2$ and $x = ay^2$ (a > 0) is 1 square unit. Find the value of

a.
$$\frac{1}{\sqrt{3}}$$


b.
$$\frac{1}{2}$$

Answer:1

The two curves meet where

$$x = a (ax^2)^2 \Rightarrow x = a^3 x^4 \Rightarrow x = 0, \frac{1}{a}$$
Area in reference

$$= \int_0^{1/a} \left(\sqrt{\frac{x}{a}} - ax^2 \right) dx$$

$$\frac{1}{\sqrt{a}} \frac{2}{3} \left[x^{3/2} \right]_0^{1/a} - \left[\frac{ax^3}{3} \right]_0^{1/a}$$

$$\Rightarrow 1 = \frac{2}{3} \frac{1}{\sqrt{a} \ a^{3/2}} - \frac{a}{3} \left(\frac{1}{a^3} \right) \Rightarrow 1 = \frac{1}{3a^2}$$

$$\Rightarrow a^2 = \frac{1}{3} \Rightarrow a = \frac{1}{\sqrt{3}}$$